

APPLICATION NOTE

EFFECTIVE MONITORING OF WATER WITH SPECTROSCOPY

INTRO

EFFECTIVE WATER MONITORING WITH SPECTROSCOPY

Water is one of the planet's most vital resources, supporting life, industries, and ecosystems. Water quality directly impacts health, agricultural productivity, and industrial processes. In recent years, the demand for water monitoring has grown due to concerns over pollution, climate change, and water scarcity. Pollutants like toxic metals, agricultural chemicals, and biological hazards pose significant risks, demanding advanced monitoring strategies.

Water monitoring serves critical roles, ensuring safe drinking water by identifying contaminants like trace metals, plastic particles, or harmful microorganisms. It protects the environment by identifying nutrient overloads that can lead to nutrient overload and harmful algal blooms.

Furthermore, industries rely on consistent water quality for optimal performance, making water monitoring essential for regulatory compliance and operational efficiency. As water issues dominate global conversations, accurate, real-time monitoring solutions become urgent.

THE ROLE OF SPECTROSCOPY IN WATER MONITORING

Spectroscopy provides an advanced, versatile approach to assessing water quality by analyzing the interaction of light with water samples. It delivers lots of information about the sample's chemical and physical properties. Unlike traditional methods, which often involve labor-intensive as well as expensive laboratory testing, spectroscopy allows for **rapid, in situ analysis with real-time data**.

Spectroscopy can detect a wide range of water quality parameters. It also adds value in monitoring biological parameters, such as chlorophyll-a levels, for detecting algae. Additionally, it can assess water transparency, suspended particles, and other physical properties that indicate overall water clarity.

The advantages of spectroscopy are numerous. It is highly sensitive and capable of detecting contaminants at concentrations as low as parts per billion—equivalent to detecting a single drop of ink in an Olympic-sized swimming pool. This level of precision highlights its unmatched ability to identify tiny traces of contaminants. Its speed and efficiency enable real-time results, supporting timely decision-making. Because it is non-destructive, spectroscopy preserves samples for further testing if needed. Furthermore, modern portable spectrometers bring laboratory-level precision into the field, making water quality monitoring more accessible.

MEASUREMENT TECHNIQUES

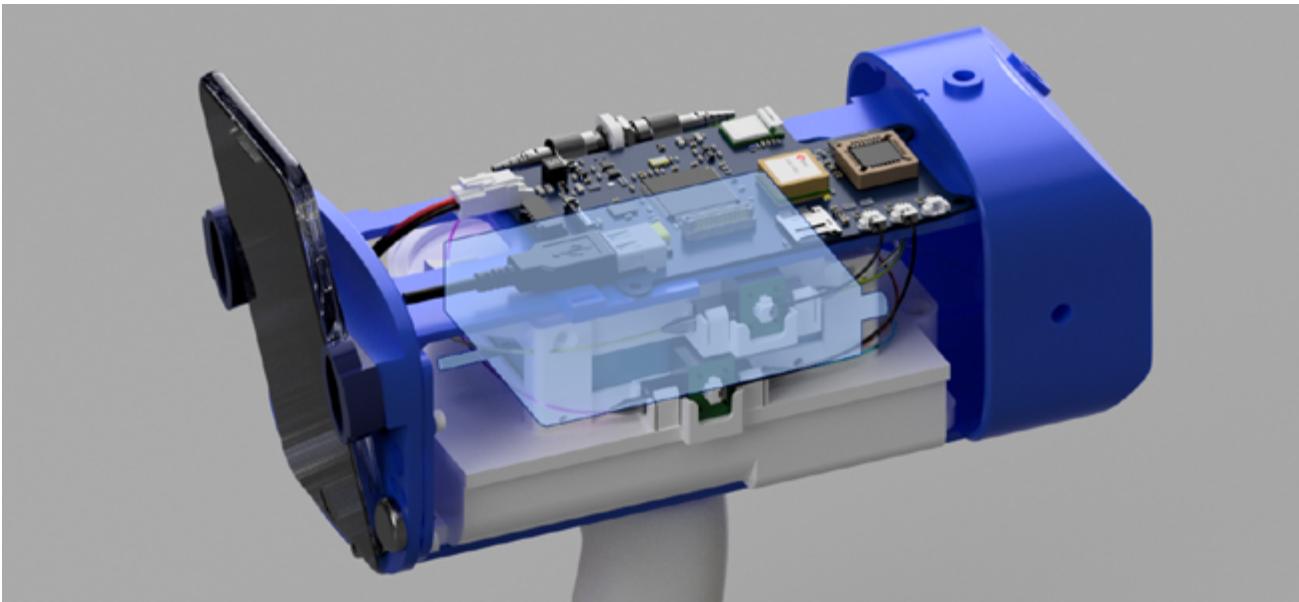
In water monitoring applications, several spectroscopic techniques are employed to achieve detailed analyses.

Absorbance spectroscopy measures light absorption at specific wavelengths to detect dissolved substances. This technique is particularly effective for identifying organic pollutants and dissolved nutrients. **Fluorescence spectroscopy**, which detects the emission of light by substances upon excitation, is commonly used for monitoring organic materials and biological entities, such as cyanobacteria.

Raman spectroscopy provides molecular-level insights by analyzing scattered light. Its high specificity makes it suitable for identifying complex mixtures or trace chemicals in water. Each technique can be tailored to the specific requirements of an application, offering unmatched flexibility and precision.

For instance, Avantes' AvaSpec-HERO spectrometer has been demonstrated to detect butylparaben concentrations as low as 1 ppm, showcasing the exceptional sensitivity achievable with advanced equipment. Combined with optimized methodologies, these techniques enable comprehensive water quality assessments.

A GAME-CHANGING INNOVATION: WISP ORCA BY WATER INSIGHT


The [WISP Orca](#), developed by **Water Insight** with significant collaboration and support from Avantes, is a state-of-the-art handheld device that exemplifies the practical application of spectroscopy in water monitoring. Designed for field use, the WISP Orca integrates Avantes' spectrometers to deliver accurate and reliable measurements across various environmental conditions. Its compact design combines cutting-edge technology with ease of use, making it accessible to professionals and researchers alike.

This innovative device boasts advanced features such as a tilt sensor for consistent measurement angles and GPS for precise geolocation of data. These capabilities ensure reproducible and location-specific measurements, which are crucial for monitoring dynamic water bodies. Moreover, the device provides real-time feedback and analysis, significantly reducing the time from data collection to actionable insights.

The WISP Orca sets a new standard with its user-friendly interface, which supports seamless measurement assistance, quick field analysis, and automatic data synchronisation to cloud storage. This functionality enhances productivity and simplifies data sharing and collaboration across teams. The WISP Orca is used globally to monitor algal blooms, assess water transparency, and ensure regulatory compliance with water quality standards.

Avantes' involvement extended beyond technology integration, beginning at the very start of the WISP Orca development. Our team collaborated closely with Water Insight during the design and development phases, offering expertise and guidance to ensure the product met rigorous standards for efficiency, accuracy, and practicality. Our close collaboration was instrumental in shaping the device's advanced capabilities and design. By introducing innovative features and leveraging cutting-edge spectroscopic technology, the WISP Orca is poised to redefine how water monitoring is approached. As adoption grows, it holds the potential to become a benchmark in the field of water quality assessment.


ADVANCED TOOLS FROM AVANTES FOR PRECISION WATER MONITORING

Avantes provides a variety of solutions that match the needs of environmental applications. For example, the [AvaSpec-NEXOS™](#), the successor of the AvaSpec-MINI. This compact spectrometer is designed to integrate into handheld devices, like the WISP Orca. This device combines small size with robust performance, delivering high-quality measurements in field environments. Its compatibility with portable setups makes it an excellent choice for professionals seeking advanced water monitoring solutions in remote or dynamic locations. Additionally, the NEXOS™ is manufactured with Avantes' semi-automated production process that ensures superior inter-instrument reproducibility.

Another notable product is the [AvaLight-DH-S-BAL](#) light source, which delivers a balanced, continuous spectrum from UV to NIR. Its design minimises interference from dominant spectral peaks, ensuring accurate and reliable measurements. The AvaSpec-VARIUS™ spectrometer, known for its versatility, complements these solutions by providing compact yet powerful capabilities for field and laboratory analyses.

Additionally, the [AvaSpec-HERO](#) is known for its high sensitivity and resolution, making it ideal for detecting low concentrations of contaminants. Equipped with thermoelectric cooling, it supports stable, long-duration measurements even in challenging environments.

When combined with [AvaSoft software](#), these instruments offer a seamless workflow for data collection, analysis, and reporting, empowering researchers and field operators alike. Avantes instruments can be controlled via our proprietary AvaSoft software, an easy-to-use Windows application to perform spectroscopic measurements. However, most OEM customers prefer to develop their own controlling software, which is why we offer a 2-bit and native 64-bit dynamic link library (DLL), also known as SDK or API, for Microsoft Windows and interface packages for Linux.

CONCLUSION

Spectroscopy has revolutionized water monitoring, offering unparalleled precision and efficiency. It addresses the diverse challenges of water quality assessment, from detecting trace contaminants to monitoring ecological health. The collaboration between Avantes and Water Insight highlights the transformative potential of these technologies, as seen in the WISP Orca.

As water becomes an increasingly scarce and valuable resource, the need for advanced monitoring solutions will only grow. Avantes remains committed to supporting this field with cutting-edge spectroscopic tools and expertise, ensuring the protection and sustainable management of water resources for future generations.

Contact us to discover how our solutions will empower you to innovate your application.

We are happy to help you with advice or free feasibility studies, guiding you to the ideal solutions that fuel your innovations and help you achieve breakthroughs in your field.

CONTACT

WE'RE HAPPY TO HELP

Curious how spectroscopy will help you reveal answers by measuring all kinds of material in-line, at your production facility, in a lab, or in the field? Visit our [website](#) or contact one of our technical experts. We are happy to help you!

Avantes Headquarters

Phone: +31 (0) 313 670 170
Email: info@avantes.com
Website: www.avantes.com

Avantes Inc.

Phone: +1 (303) 410 866 8
Email: infousa@avantes.com
Website: www.avantesUSA.com

Avantes China

Phone: +86 (0) 108 457 404 5
Email: info@avantes.com.cn
Website: www.avantes.cn

Follow us on social media:

