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A B S T R A C T

In the present work, we reported one kind of photocatalytic and surface-enhanced Raman scattering substrate,
H2Ti3O7 nanowires, which prepared on the Ti foil by the hydrothermal and ion‐exchange methods. The
morphologies, crystal structures, chemical compositions, optical properties of the as-prepared substrates in-
vestigated via the different kinds of characterization techniques. H2Ti3O7 nanowires revealed remarkably en-
hanced visible-light photocatalytic activity for the degradation of rhodamine 6 G solution compared to Na2Ti3O7

nanowires, TiO2 nanowires, and commercial photocatalysts (TiO2 and ZnO nanoparticles). These results at-
tributed to the H2Ti3O7 nanowires with a higher concentration of oxygen vacancies can enhance the visible-light
absorbance, resulting in the higher photocatalytic activity under the visible-light irradiation. The radical-trap-
ping test shows that holes and hydroxyl radicals played central roles in rhodamine 6 G photodegradation. The
deposition of Ag nanoparticles on the H2Ti3O7 nanowires can also use as a highly sensitive surface-enhanced
Raman scattering substrate for detecting rhodamine 6 G solution with a concentration as low as 10−9 M by the
ion-sputtering system.

1. Introduction

It is the first time that Fujishima and Honda employed titanium
dioxide (TiO2) for the photocatalytic decomposition of water under
ultraviolet (UV) light irradiation in 1972 [1]. Since then, TiO2 has
widely used in different fields, such as photocatalytic degradation of
organic pollutants, water splitting, photocatalytic reduction of carbon
dioxide into fuels, dye-sensitized solar cells, supercapacitors, lithium-
ion batteries, and biomedical devices [2–4]. There are three common
crystal structures, such as anatase (tetragonal), rutile (tetragonal), and
brookite (orthorhombic) [5]. Among them, anatase TiO2 has ex-
tensively accepted to possess superior photocatalytic activity due to its
rapid hole trapping process [6]. TiO2 is a very important semiconductor
material with a wide direct bandgap (3.2 eV for anatase, 3.0 eV for
rutile, and brookite for 2.96 eV) and high light refraction coefficient
(anatase n= 2.55, rutile n=2.72, and brookite n= 2.64), resulting in
its widespread of optical applications [3,7]. Also, TiO2 is an ideal
photocatalysis for practical applications on the wastewater treatments
due to its strong oxidizing power, non-toxic, low-cost, and excellent
chemical stability [8]. In general, a high-performance photocatalysis
requires not only high surface-active sites to harvest light but also an

efficient architecture prolonging photogenerated carrier lifetime to
enhance their contribution in the photocatalytic process [9]. However,
TiO2 has exhibited the fast recombination ratio of photoinduced elec-
tron-hole pairs and only absorb 3–5 % of the solar spectrum, which was
severe limits the photocatalytic efficiencies.

Up to now, several strategies have utilized to improve the visible-
light photocatalytic performance of TiO2. These approaches can mainly
categorize into: (1). Doping metal or non-metal ions (such as C, N, and
B) [10–12], (2). Deposition of noble metals [13,14], (3). Combining
TiO2 with other semiconductor materials [6,15–17], and (4) Other ti-
tanium oxide-based materials [18–21]. Among various approaches,
hydrogen trititanate (H2Ti3O7) of other titanium oxide-based materials
has attracted significant interest due to their unique physical and che-
mical properties for applications in photocatalytic degradation of or-
ganic pollutants [22,23], water splitting [24,25], H2 and CO2 adsorp-
tion [26,27], dye-sensitized solar cells [28], supercapacitors [29], and
Na ion batteries [30]. Also, H2Ti3O7 is an important intermediate
product of the transformation between Na2Ti3O7 and TiO2. The pre-
pared powder-type of H2Ti3O7 nanostructures with a higher surface-to-
volume ratio can enhance high-performance photocatalytic activity
[22,23]. However, in a practical photocatalytic process, the separation
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of these powder photocatalysts from solution after reaction could be
complicated, and meanwhile, the tendency to agglomerate into larger
powders results in a reduction of the photocatalytic activity during the
cycling use [31]. If H2Ti3O7 nanostructures can directly grow on the
solid substrates, which improve these drawbacks. However, there are
fewer reports about the growth of H2Ti3O7 nanowires on the solid
substrates for the application in photocatalytic degradation of organic
pollutants. To the best of our knowledge, there are no reports about the
growth of H2Ti3O7 nanowires for photocatalytic and surface-enhanced
Raman scattering applications.

In this work, H2Ti3O7 nanowires have directly synthesized on the Ti
foil by simple hydrothermal and ion‐exchange processes. The reaction
conditions play essential roles in controlling the morphology and size of
H2Ti3O7 nanostructures. H2Ti3O7 nanowires with more enormous
amounts of surface oxygen deficiencies formation can enhance the
visible-light absorbance, improving their photocatalytic activity under
visible-light irradiation. Also, H2Ti3O7 nanowires have suitable

geometric structures for deposition three-dimensional Ag nanoparticles,
which led to high-performance surface-enhanced Raman scattering
(SERS) detection.

2. Experimental

2.1. Synthesis of H2Ti3O7 nanowires

Titanium foil (Ti, 99.5 % pure and 0.25mm thick, Alfa Aesar) was
ultrasonically cleaned in ethanol and dilute hydrogen chloride (1M,
HCl) solution for 15min and 1min to remove organic contamination
and oxide layer on the surface, respectively. For Na2Ti3O7 nanowires,
this substrate was placed in a separate 50mL Teflon-lined stainless steel
autoclave and filled with the different concentrations of NaOH solution
(20mL) at 220 °C for the different reaction time. For H2Ti3O7 nano-
wires, this substrate with Na2Ti3O7 nanowires washed with deionized
water and ethanol in turn, then immersed in 1M HCl solution for

Fig. 1. (a–d) The top-view FESEM images of Na2Ti3O7 nanowires prepared on the Ti foil at the different reaction times. The reaction times were (a) 5, (b) 10, (c) 15,
and (d) 20 h, respectively. (e) The average length of Na2Ti3O7 nanowires as a function of the reaction time.
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30min to replace Na+ with H+. Finally, this substrate was washed with
deionized water and ethanol in turn, then dried under an air purge.

2.2. Characterization

The surface morphology of as-prepared photocatalysts studied with
a field-emission scanning electron microscopy (FE-SEM, Hitachi S-
4800) operating at 10 kV accelerating voltage. A field-emission trans-
mission electron microscopy (FE-TEM, JEOL-2100 F) operating at
200 kV was used to examine the H2Ti3O7 nanowire. The crystallinity of
the as-prepared photocatalysts examined by using an X-ray dif-
fractometer (XRD, Bruker D2 phaser) equipped with a Cu-Kα radiation
source (λ= 0.15406 nm). Excited as-prepared photocatalysts con-
ducted the photoluminescence (PL) spectra with a 325 nm He-Cd laser.
X-ray photoelectron spectroscopy (XPS) analysis was carried out by
using a ULVAC-PHI PHI 5000 Versaprobe II system equipped with an
Al-Kα radiation source. The photocatalytic activities of as-prepared
photocatalysts and commercial photocatalysts investigated for the de-
gradation of rhodamine 6 G (R6G) solution (0.02mM) without ad-
justing the pH value. For the photocatalytic process, UVC (Philip, 10W,
λmax= 254 nm) and blue light LED (100W, λmax= 465 nm) lamps
used as a source of UV and visible light, respectively. The concentration
of the R6G solution was analyzed by recording variations in the char-
acteristic absorption band (λmax= 526 nm) using a UV/VIS spectro-
scopy (U-2900, Hitachi). The photocatalytic efficiency of as-prepared
photocatalysts and commercial photocatalysts (TiO2 nanopowder and
ZnO nanopowder) under UV- or visible-light irradiation defined as C/
C0, C0 and C were the initial and instantaneous concentrations of R6G
solution, respectively. The SERS spectra analyzed by using a confocal
Raman spectrometer (MRI532S, Protrustech, Taiwan) with an excita-
tion wavelength of 532 nm and a power of 1mW.

3. Results and discussion

3.1. Synthesis and characterization of H2Ti3O7 nanowires

Fig. 1a–d shows the top-view FESEM micrographs of Na2Ti3O7 na-
nowires were directly grown on the Ti foil by a facile hydrothermal
method at 220 °C for the different reaction time. The reaction time was
5, 10, 15, and 20 h, respectively. With the increased reaction time, more
and more scattered Na2Ti3O7 nanowires formed, and some nanowires
exhibited agglomeration. The average lengths of Na2Ti3O7 nanowires
were 2.3 ± 0.5, 3.4 ± 0.7, 4.8 ± 1.2, and 5.2 ± 1.6 μm, respec-
tively, as shown in Fig. 1e. As the reaction time increased, the length
deviation of Na2Ti3O7 nanowires became more and more evident. On
the other hand, appropriate reaction time cannot only be beneficial to
the growth of Na2Ti3O7 nanowires with the uniform length but also
avoid forming the scattered Na2Ti3O7 nanowires. To adequately un-
derstand the growth mechanism of Na2Ti3O7 nanowires, the present
work explored the change of the morphology under the shorter reaction
time. Fig. S1 shows the 45° tilt-view FESEM micrographs of Na2Ti3O7

nanowires were grown at a different reaction time of 1, 2, 3, 4, and 5 h,
respectively. At the reaction time of 1 and 2 h, an apparent morphology
of Na2Ti3O7 nanosheets observed. When the reaction time increased,
the morphology of Na2Ti3O7 nanostructures could change from na-
nosheet to nanotubes. At the reaction time of 5 h, the morphology of
Na2Ti3O7 nanostructures could change from nanotubes to nanowires.
Based on the SEM results, the appropriate reaction time can beneficial
to grow Na2Ti3O7 nanowires on the Ti foil.

In the previous study, the ion-exchange method can use to replace
the Na+ ions with H+ ions on the Na2Ti3O7 nanowires by immersed in

1M HCl solution for 30min [32]. Also, the H2Ti3O7 nanowires can
easily convert to TiO2 nanowires by thermal annealing process at 500 °C
for 3 h under the ambient condition [18]. Fig. 2a shows the optical
photographs of Na2Ti3O7, H2Ti3O7, and TiO2 nanowires grown on the
Ti foils (1.5 cm×2.5 cm) at the reaction time of 5 h. The surface color
of the three kinds of crystal phase substrates cannot exhibit evidence
change. Fig. 2b–d shows the 45° tilt-view FESEM micrographs of
Na2Ti3O7, H2Ti3O7, and TiO2 nanowires grown on the Ti foils, respec-
tively. The average sizes of Na2Ti3O7, H2Ti3O7, and TiO2 nanowires
were 84.2 ± 15.6, 87.4 ± 17.1, and 86.8 ± 18.7 nm, respectively.
The H2Ti3O7 and TiO2 nanowires cannot observe an evident change in
the morphology and size of Na2Ti3O7 nanowire after ion-exchange and
thermal annealing processes. Fig. 2e shows the TEM micrograph of
H2Ti3O7 nanowires with a diameter of 76.3 nm. Fig. 2f shows the
HRTEM micrograph of the H2Ti3O7 nanowire, which a lattice spacing of
0.186 nm observed for the monoclinic H2Ti3O7 crystal of (020) plane
(JCPDS No. 41-0192).

To further determine the crystal structure and possible phase
transformation during ion-exchange and thermal annealing processes,
X-ray diffraction spectra of the Na2Ti3O7, H2Ti3O7, and TiO2 nanowires
collected in Fig. 3. Fig. 3a shows the Na2Ti3O7 nanowires revealed two
mixed diffraction peaks, containing hexagonal Ti crystal (JCPDS Card
No. 44-0148) and monoclinic Na2Ti3O7 crystal (JCPDS Card No. 44-
0148), respectively. After the ion exchange process, the diffraction
peaks of Na2Ti3O7 nanowires disappeared, and three new diffraction
peaks emerged at 2θ values of 24.5°, 27.1°, and 48.7° corresponding to
(110), (40−2), and (020) crystal planes of monoclinic H2Ti3O7 crystal
(JCPDS Card No. 41-0192), as shown in Fig. 3b. This result consisted of
the above HRTEM micrograph (Fig. 2f). X-ray photoelectron spectro-
scopy (XPS) was employed to analyze the chemical composition and
bonding configuration of H2Ti3O7 nanowires. Fig. S2 shows the XPS
spectrum of H2Ti3O7 nanowires, which mainly composed of Ti and O.
The C 1s peak ascribed to the hydrocarbons from the XPS instrument
itself. Also, the Na 1s peak (Fig. S2 inset) of H2Ti3O7 nanowires dis-
appeared after the ion exchange process. This phenomenon also in-
dicates that Na2Ti3O7 nanowires have successfully transformed into
H2Ti3O7 nanowires. Fig. 3c indicates that the diffraction peaks of
H2Ti3O7 nanowires, which completely converted to anatase TiO2 crystal
(JCPDS Card No. 21-1272) and rutile TiO2 crystal (JCPDS Card No. 21-
1276) by thermal annealing process at 500 °C for 6 h in ambient con-
ditions.

To explore the energy band and electronic structures of the as-
prepared photocatalysts, we investigated by the room temperature of
photoluminescence (PL). Fig. 4 shows the PL spectra of Na2Ti3O7,
H2Ti3O7, and TiO2 nanowires grown on the Ti foil. For Na2Ti3O7 and
H2Ti3O7 nanowires, there was exhibited a great and broad visible
emission peak at 486.9 nm. The visible emission peak ascribed to the
existence of surface defects or oxygen vacancies on the crystal
[18,33,34]. Compared with Na2Ti3O7 nanowires, H2Ti3O7 nanowires
could present a higher number of surface defects or oxygen vacancies to
reveal the stronger visible emission.

To investigate the surface oxidation states of Na2Ti3O7 and H2Ti3O7

nanowires, the XPS was employed to analyze, as shown in Fig. S3.
There were three peaks located at 530.4, 531.2, and 532.7 eV for the
O1 s spectra, which ascribed to the lattice oxygen (OL), oxygen va-
cancies or defect (OV), and chemisorbed or dissociated oxygen (OC) in
the Na2Ti3O7 and H2Ti3O7 nanowires. For oxygen vacancies or defects
peak at 531.2 eV, the relative intensity of H2Ti3O7 nanowires is higher
than Na2Ti3O7 nanowires [18,35]. This result indicates that the ion-
exchange process may induce the formation of oxygen vacancies or
defects on the H2Ti3O7 nanowires. For TiO2 nanowires, there was
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exhibited a weak and broad visible emission peak at 476.7 nm. TiO2

nanowires exhibited a blue-shifted emission peak in comparison with
Na2Ti3O7 and H2Ti3O7 nanowires, which shall attribute to the radiative
recombination of the photogenerated holes with the electrons occu-
pying the oxygen vacancies to form singly ionized oxygen vacancies
[36]. H2Ti3O7 nanowires with a high concentration of oxygen vacancies
can not only act the positive charge centers to trap electrons but also
create an impurity level near the valence band to induce the bandgap
narrowing [37]. These results shall be beneficial to enhance the visible-
light photocatalytic activity.

3.2. Photocatalytic activity of H2Ti3O7 nanowires

The photocatalytic performance of Na2Ti3O7 nanowires grown with
the different reaction times in the same area (1.5 cm×2.5 cm) eval-
uated by the degradation of R6G solution under low-powered UVC
lamp (10W). Fig. 5a shows the ratio (C/C0) of the concentration of R6G
solution (C) and initial R6G solution (C0) versus the irritation time [38].

The photocatalytic efficiency of blank (without photocatalysts) and
Na2Ti3O7 nanowires grown with the different reaction times were 13.5,
81.9 (5 h), 79.7 (10 h), 79.1 (15 h), and 80.3 % (20 h), respectively.
When the reaction time exceeded 5 h, the photocatalytic efficiency of
Na2Ti3O7 nanowires tended to decrease. This phenomenon attributed
the surface of Na2Ti3O7 nanowires with scattered Na2Ti3O7 nanowires,
which could decrease the surface active sites of photocatalysts. Fig. 5b
depicts that the photocatalytic efficiency of Na2Ti3O7, H2Ti3O7, and
TiO2 nanowires grown at the reaction time of 5 h were 81.9, 82.8, and
75 %, respectively. Compared with TiO2 nanowires, the Na2Ti3O7 and
H2Ti3O7 nanowires revealed to enhance photocatalytic efficiency under
a low-powered UVC lamp. These results ascribe to Na2Ti3O7 and
H2Ti3O7 nanowires with a high concentration of oxygen vacancies,
which can reduce the recombination rate of electron-hole pairs to in-
crease the photocatalytic efficiency under the UVC irradiation.

Fig. 5c shows the photocatalytic efficiency of as-prepared and
commercial photocatalysts under the visible-light irradiation. The blank
experiment indicates that the photodegradation of R6G was negligible

Fig. 2. (a) Optical photographs of a piece of Na2Ti3O7, H2Ti3O7 and, TiO2 nanowires prepared on the Ti foil. The tilt-view FESEM images of (b) Na2Ti3O7, (c)
H2Ti3O7, and (d) TiO2 nanowires prepared on the Ti foil. (e) The TEM image of an H2Ti3O7 nanowire in (c). (f) The HRTEM image of a single crystalline phase of
H2Ti3O7 nanowire in (e).
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in the absence of photocatalysts under the visible-light irradiation. The
photocatalytic efficiency of blank (without photocatalysts), as-prepared
photocatalysts (Na2Ti3O7, H2Ti3O7, TiO2 nanowires grown on the Ti
foil), commercial photocatalysts (TiO2 and ZnO nanoparticles) were 2.4
(blank), 79.5 (Na2Ti3O7 nanowires), 94 (H2Ti3O7 nanowires), 3.9 (TiO2

nanowires), 29.3 (TiO2 nanoparticles), and 52.2 % (ZnO nanoparticles),
respectively. The photocatalytic efficiency of H2Ti3O7 nanowires ex-
hibited superior compared with other as-prepared and commercial
photocatalysts. The photocatalytic degradation kinetics of R6G solution
followed a pseudo-first-order reaction, and the reaction constants were
calculated to be 0.0001 (blank), 0.0086 (Na2Ti3O7 nanowires), 0.0160
(H2Ti3O7 nanowires), 0.0002 (TiO2 nanowires), 0.0017 (TiO2 nano-
particles), and 0.0037min–1 (ZnO nanoparticles), respectively, as
shown Fig. 5d. For as-prepared photocatalysts, H2Ti3O7 nanowires re-
vealed almost 1.8 and 80 times higher than that of Na2Ti3O7 nanowires
and TiO2 nanowires, respectively. For commercial photocatalysts,
H2Ti3O7 nanowires exhibited almost 9.4 and 4.3 times higher than that
of TiO2 nanoparticles and ZnO nanoparticles, respectively. This phe-
nomenon may attribute to H2Ti3O7 nanowires with a high

concentration of oxygen vacancies, which can induce bandgap nar-
rowing for improving visible-light photocatalytic degradation.

To investigate the photocatalytic mechanism in the R6G photo-
degradation process, four kinds of radical scavengers added into pho-
tocatalytic reaction. In the present work, benzoquinone (BQ), silver
nitrate (AgNO3), isopropyl alcohol (IPA), and triethanolamine (TEOA)
were used as radical scavengers to quench superoxide radical anions (%

O2–), electrons (e–), hydroxyl radicals (·OH), and holes (h+), respec-
tively. The decrease in the photocatalytic efficiency of H2Ti3O7 nano-
wires can use to evaluate the importance of radical scavengers. Fig. 6a
shows the variation of photocatalytic efficiency of H2Ti3O7 nanowires
was accompany by the addition of different kinds of radical scavengers.
It is evident that with no radical scavengers, the photocatalytic effi-
ciency of H2Ti3O7 nanowires was 93.2 %. When the reaction solution
added radical scavengers of BQ, AgNO3, IPA, and TEOA, the photo-
catalytic efficiency of H2Ti3O7 nanowires decreased to 39.4, 38.7, 26.3,
and 21.9, respectively. This result indicates that h+ and ·OH played the
mainly important radicals for the photodegradation of R6G.

Based on the above results, the possible photocatalytic mechanism
of H2Ti3O7 nanowires under the visible-light irradiation can illustrate in
Fig. 6b. The conduction band (CB) and valance band (VB) of H2Ti3O7

are positioned at −0.084 and 3.216 V, respectively [21,39]. The
oxygen vacancy can create a new electric state band at the bottom of
the CB of H2Ti3O7 nanowires, which couples with narrowing the
bandgap to improve the visible-light absorption. The oxygen vacancy
induced visible-light absorption and enhanced photocatalytic perfor-
mances have been reported in the different kinds of metal oxide ma-
terials [33,37,40–43]. In this study, the photogenerated electrons of
H2Ti3O7 nanowires shall be excited into their CB under the visible-light
irradiation. The photogenerated electrons (e–) can reduce O2 molecules
to H2O2 and finally into hydroxyl radicals (HO·) for the degradation of
R6G solution. The photogenerated holes (h+) in the VB of H2Ti3O7

nanowires can directly react with R6G solution or indirectly react with
H2O molecules to form hydroxyl radicals (HO·) for the degradation of
R6G solution. The photocatalytic degradation process can be described
as follows [44–47]

H2Ti3O7 + hv → e– (H2Ti3O7, CB) + h+ (H2Ti3O7, VB)

h+ + H2O → HO% + H+

O2 + 2H+ + 2e− → H2O2

H2O2 + h+ → HO2
% + H+

HO2
% + OH− → O2

%− + H2O

O2
%− + 2H+ + e− → H2O2

H2O2 + hv → 2HO%

h+ or HO% + R6G → Photodegradation products

The recyclability and stability of the photocatalyst was a critical
factor for its practical application. Fig. 7 shows the recycling photo-
degradation of the R6G solution to test the stability of H2Ti3O7 nano-
wires under the visible-light irradiation. The photocatalytic efficiency
of H2Ti3O7 nanowires was respectively 94.0, 92.3, 92.0, 89.9, and 91.8
% for the five cycles. After the recyclability tests, the photocatalytic
efficiency of H2Ti3O7 nanowires revealed an insignificant decrease
(∼2.3 %), which could ascribe to them directly grown on the Ti foil
with unavoidable loss in the photodegrading process. Also, the XRD
spectrum (Fig. S4) of the recycled H2Ti3O7 nanowires were almost si-
milar to the fresh photocatalysts (Fig. 3b). H2Ti3O7 nanowires exhibited
excellent stability in the photodegrading process under the visible-light
irradiation, which shall be a promising role in the wastewater treat-
ment.

Fig. 3. XRD spectra of (a) Na2Ti3O7, (b) H2Ti3O7, and (c) TiO2 nanowires
prepared on the Ti foil.

Fig. 4. PL spectra of Na2Ti3O7, H2Ti3O7, and TiO2 nanowires fabricated on the
Ti foil.
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3.3. Surface-enhanced Raman scattering of H2Ti3O7 nanowires

Due to H2Ti3O7 nanowires directly aligned on the Ti foil, which
could be beneficial to decorate Ag nanoparticles form three-dimen-
sional H2Ti3O7@Ag heterostructures for the application of surface-en-
hanced Raman scattering. Fig. 8a shows the 45° tilt-view FESEM image
of H2Ti3O7 nanowires have been wholly decorated Ag nanoparticles by
the ion-beam sputtering system at the sputtering duration of 60 s. The
TEM image (Fig. 8b) of an individual H2Ti3O7@Ag heterostructure
further confirms that Ag nanoparticles have covered on the H2Ti3O7

nanowires to make the surface rougher. Fig. 8c shows the HRTEM
image of an Ag nanoparticle on the surface of H2Ti3O7 nanowire, which
two distinct regions of lattice fringes observed. One was a lattice

spacing of 0.186 nm observed for the monoclinic H2Ti3O7 crystal of
(020) plane (JCPDS No. 41-0192). The other was a lattice spacing of
0.235 nm observed for the cubic Ag crystal of (111) plane (JCPDS No.
04-0783). Fig. 8 d–f shows the EDS mapping images of an H2Ti3O7@Ag
heterostructure were Ti, O, and Ag, respectively. It can observe that Ti,
O, and Ag dominated the composition of H2Ti3O7@Ag heterostructure.

To estimate the SERS activity of H2Ti3O7@Ag heterostructures
through detecting the Raman vibrational signals of R6G molecules, we
compared the behaviors of Ag nanoparticle decorated on the H2Ti3O7

nanowires with a different sputtering time of 15, 30, 60, and 90 s, re-
spectively. H2Ti3O7@Ag heterostructures immersed into the R6G so-
lution (10−6 M) at room temperature for 1 h in the dark and dried with
N2 purge. Fig. 9a presents the SERS spectra of R6G molecules adsorbed

Fig. 5. (a) Photocatalytic properties of
Na2Ti3O7 nanowires prepared on the Ti foil at
the different reaction times under the UVC
lamp. (b) Photocatalytic properties of
Na2Ti3O7, H2Ti3O7, and TiO2 nanowires pre-
pared on the Ti foil under the UVC lamp. (c)
Photocatalytic properties of different photo-
catalysts under the blue-light LED lamp. (d)
Kinetic simulation curves of R6 G degradation
over (c).

Fig. 6. (a) The photodegradation of R6 G solution on the Ti foil with H2Ti3O7 nanowires in the presence of various scavengers. (b) The schematic diagram for
photocatalytic degradation of R6 G solution by H2Ti3O7 nanowires.
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on the H2Ti3O7@Ag heterostructures fabricated using a different sput-
tering time. The main Raman peaks assigned to the R6G molecules,
such as 1127, 1183, 1310, 1363, 1509, 1575, and 1645 cm−1 [48,49].
The SERS intensity of the H2Ti3O7@Ag heterostructures increased sig-
nificantly with an increase in the sputtering time, wherein the highest
SERS intensity achieved at the sputtering time of 60 s. The SERS in-
tensity of the H2Ti3O7@Ag heterostructures decreased at the sputtering
time of 90 s, which was ascribed to the aggregation of Ag nanoparticles
during the long sputtering time to reduce the number of hot spots in the
three-dimensional structures. Fig. 9b presents the SERS spectra of R6G
solution adsorbed on the H2Ti3O7@Ag heterostructures with the sput-
tering time of the 60 s at the different concentrations (10−6 to 10−9 M).

The intensity of all of the Raman peaks decreased sharply with the
decrease in the concentration of R6 G solution. The lowest detected
concentration of R6G solution was 10−9 M. This result demonstrates
that the H2Ti3O7@Ag heterostructures can use in the highly sensitive
SERS-base sensing. In our previous work, semiconductor nanostructures
with Ag nanoparticles could use to improve photocatalytic efficiency,
which attributed to the rapid photoinduced charge separation, more
photo-absorption in the visible region, and surface active sites [50].
H2Ti3O7@Ag heterostructures with a different sputtering time also used
to photodegrade the R6G solution under the visible-light irradiation, as
shown in Fig. S5. Accompany with the increase in the sputtering time of
Ag nanoparticles, the photocatalytic efficiency of H2Ti3O7@Ag het-
erostructures gradually decreased. This phenomenon should reasonably
attribute to the fact that the high-density Ag nanoparticles may reduce
light penetration into H2Ti3O7 nanowires and inhibit their photo-
catalytic activity.

4. Conclusions

In summary, H2Ti3O7 nanowires have successfully prepared on the
Ti foil via the combination of hydrothermal and ion‐exchange pro-
cesses. H2Ti3O7 nanowires exhibited very prominent blue emission
from surface oxygen vacancies in the PL spectrum. H2Ti3O7 nanowires
can beneficial to enhance photocatalytic decomposition of R6G solution
under visible-light irradiation. Compare with Na2Ti3O7 nanowires and
TiO2 nanowires, H2Ti3O7 nanowires with large amounts of oxygen va-
cancies or surface defects can improve the light-harvesting ability to
enhance their photocatalytic activity under visible-light irradiation.
The holes and hydroxyl radicals were two main active species during
the photocatalytic processes. The decorated Ag nanoparticles on the
H2Ti3O7 nanowires can also provide an excellent SERS-active substrate
in the detection of the R6G solution with a concentration as low as 10−9

M.

Fig. 7. The reusability test of the H2Ti3O7 nanowires prepared on the Ti foil for
the photodegradation of R6 G solution under blue-light LED lamp.

Fig. 8. (a) The tilt-view FESEM images of H2Ti3O7 nanowires with 60 s Ag-sputtering duration prepared on the Ti foil. (b) TEM, (c) HRTEM, and (d-f) EDS mapping
images of an H2Ti3O7 nanowire. The EDS mapping images were (d) Ti, (e) O, and (f) Ag, respectively.
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