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Preparation and SERS performance of silver nanowires arrays on paper by 
automatic writing method 
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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Silver nanowires arrays were prepared 
by automatic writing method. 

• The detection limit of crystal violet 
adsorbed on the arrays was down to 10- 

15 mol/L. 
• The arrays exhibited good uniformity 

and repeatability with RSD of about 
10%. 

• Crystal violet residue was successfully 
detected by continuously pressing nine 
times. 

• The quantitative analyses of 2, 2′- 
bipyridyl were achieved based on the 
arrays.  
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A B S T R A C T   

Silver nanowire ink was written on the surface of drawing paper by automatic writing method. Scanning electron 
microscopy was used to characterize the surface morphologies of the drawing paper before and after writing 
silver nanowires. The effects of fabrication parameters and measurement parameters on silver nanowires arrays 
were investigated. Crystal violet was selected as the probe molecule to study the SERS performance of silver 
nanowires arrays. The detection limit of crystal violet was as low as 10-15 mol/L. The uniformity and repeat
ability of the arrays were also explored, and the relative standard deviation values were about 10%. Moreover, 
silver nanowires arrays were also relatively stable that SERS signals were still observed after ten weeks. Detection 
of the crystal violet residue was further achieved on the substrates by continuously pressing nine times. In 
addition, silver nanowires arrays were also applied to the quantitative analyses of 2, 2′-bipyridyl.   

1. Introduction 

Surface-enhanced Raman scattering (SERS) is a nondestructive, 
highly sensitive and selective analysis technique, which plays an 
important role in food detection, environmental monitoring and 

pharmaceutical analyses [1–4]. There are two main enhancement 
mechanisms of SERS: electromagnetic enhancement and chemical 
enhancement [5,6]. It is generally believed that the electromagnetic 
enhancement excited by surface plasmon resonance contributes to the 
enhancement of the weak Raman scattering from target molecules [7]. 
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The electromagnetic field around the nanostructures is often called “hot 
spots”. Hot spots are mainly determined by the size of nanostructures 
[8], period of nanostructure arrays [9] or the nanoscale gap between 
two nanostructures [10]. Chemical enhancement is concerned with 
charge transfer interactions between substrates and target molecules 
[11]. Silver is considered to be the best SERS material with a strong 
signal response [12]. Silver nanostructures with various shapes, 
including nanoparticles, nanowires, nanorods, nanoplates and so on 
have been prepared [13–16]. Among them, nanostructures with high 
curvature surfaces and sharp edges exhibited great Raman scattering 
enhancement [17,18]. Silver nanowires possess non-circular cross-sec
tion and tip properties, which are conducive to the effective enrichment 
of local electromagnetic fields [19,20]. Previous studies have shown that 
the nanotips and particle gaps of silver nanowires tended to generate 
strong hot spots, which was very beneficial for the detection of target 
molecules [21,22]. 

Paper is widely used as a supporting base for SERS substrates due to 
its lightness, flexibility and low cost [23]. Additionally, the hierarchical 
roughness of paper provides greater surface area for analytes detection 
[24]. At present, several different methods have been employed to 
prepare SERS substrates on paper, such as screen printing, ink
jet printing, dropping method [19,25,26]. For example, Joshi et al. 
prepared silver nanowires paper-based SERS substrates on demand by 
inkjet printing silver halide, and the substrates could be preserved for 
one year under environmental conditions [25]. Sun et al. directly 

dropped silver nanowires on the surface-modified paper to prepare a 
paper-based SERS substrate and successfully detected furazolidone in 
different environments [19]. These substrates have shown great poten
tial as low cost, disposable and reproducible for molecular analyses. 
However, there is still a need to improve the reproducibility and reduce 
the cost of preparing SERS substrates. Automatic writing is a machine 
that mimics human handwriting. At present, automatic writing tech
nique has been used in the fields of human health monitoring and 
electronic sensors [27,28]. Automatic writing machine can adjust 
writing speed and design required patterns. Moreover, the operation 
process of automatic writing instrument is simple and safe. 

In this paper, silver nanowires arrays were prepared on drawing 
paper by automatic writing method. Firstly, the optimal preparation and 
measurement parameters affecting the SERS performance of silver 
nanowires arrays were studied. Subsequently, the SERS activities of 
silver nanowires arrays were evaluated using crystal violet. And the 
uniformity, repeatability and stability of the arrays were further 
explored. Moreover, the arrays were used for SERS detection of crystal 
violet residues in consecutive nine fingerprints and quantitative ana
lyses of 2, 2′-bipyridyl. 

Fig. 1. Schematic diagram of the preparation and detection of silver nanowires array.  

Fig. 2. SEM images of drawing paper (a) uncoated and (b) coated with silver nanowires.  
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Fig. 3. The plots of different (a) drying temperatures, (b) drying time, (c) laser powers and (d) integration time versus the peak intensities of crystal violet adsorbed 
on silver nanowires arrays. 

Fig. 4. (a) SERS spectra of crystal violet with different concentrations absorbed on silver nanowires arrays. (b) The relationship between crystal violet concentrations 
and peak intensities at 913 and 1176 cm− 1. 

Table 1 
Silver nanowires SERS substrates prepared by different methods.  

SERS substrates Methods Supporting materials Probe molecules Limit of detection (LOD) References 

AgNWs@AgNPs film Interface self-assembly Shape memory polyurethane (SMPU) Rhodamine B 10-10 mol/L [33] 
AgNWs paper substrate Dropping Filter paper Methylene blue (MB) 10-8 mol/L [19] 
AgNWs-network-film (AgNWNF) Spraying Polydimethyl siloxane (PDMS) Rhodamine 6G (R6G) 10-7 mol/L [34] 
AgNWs film Evaporation-induced aggregation Glass slide Rhodamine 6G (R6G) 10-10 mol/L [35] 
AgNWs@PDMS Dropping Polydimethyl siloxane (PDMS) Malachite 

green (MG) 
10-8 mol/L [36] 

AgNWs arrays Automatic writing Drawing paper Crystal violet (CV) 10-15 mol/L This work  
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2. Experimental 

2.1. Materials and reagents 

Silver nanowire ink with diameters and length of 30 ~ 60 nm and 10 
~ 50 μm was purchased from Zhejiang Kechuang Advanced Materials 
Technology Co., Ltd.. The drawing paper (9.15 g/piece, white color, 
Guangbo Group Co., Ltd.) was purchased from the local supermarket. 
The paper did not require special treatment before writing. The pen with 
a tip of 0.7 mm was bought from Shanghai Boccaccio Industry Co., Ltd.. 
Table S1 exhibited the details of the pen. The automatic writing device 
was supplied by Hunan Chuanglebo Intelligent Technology Co., Ltd. 

(Hunan, China). The characteristic parameters of automatic writing 
device were exhibited in Table S2. Crystal violet and 2, 2′-bipyridyl were 
provided by Shanghai Bailingwei Chemical Technology Co., Ltd. and 
Shanghai Maclin Biochemical Technology Co., Ltd., respectively. The 
specific chemical structural structures of crystal violet and 2, 2′-bipyr
idyl were shown in Fig. S1. Concentrated hydrochloric acid (HCl, 36–38 
wt%) was supplied by Shanghai Runjie Chemical Reagent Co., Ltd.. 
Crystal violet ethanol solution with a concentration of 10-2 mol/L was 
prepared. Then the stock solution was diluted with deionized water to 
prepare crystal violet solutions with concentrations from 10-3 to 10-15 

mol/L. 

Fig. 5. (a) SERS spectra of thirty points of crystal violet adsorbed on the same array and (b) the corresponding SERS intensity distribution at 913 cm− 1. (c) SERS 
spectra of crystal violet obtained from 4 × 4 silver nanowires arrays and (d) the corresponding SERS intensities at 913 and 1176 cm− 1. (e) SERS spectra of crystal 
violet during different storage time and (f) the corresponding SERS intensities at 913 and 1176 cm− 1. 

K. Wang et al.                                                                                                                                                                                                                                   



Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 281 (2022) 121580

5

2.2. Preparation of silver nanowires arrays on drawing paper 

Fig. 1 showed the schematic diagram of fabricating silver nanowires 
arrays by automatic writing method. Firstly, silver nanowire ink was 
filled into a pen and the pen was fixed in the card slot of the automatic 
writing device. Parameters such as the shape and size of the substrate, 
the writing speed and height of the device were set through the com
puter connected to the automatic writing device. In the experiment, the 
shape of the substrate was set as a square of 2 × 2 mm2, and the writing 
speed and height of the instrument were 5000 mm/min and 3 mm, 
respectively. Secondly, the silver nanowires arrays were dried in an oven 
with different drying temperatures and drying time, respectively. 
Finally, crystal violet solutions with different concentrations were 
dropped onto the silver nanowires arrays. After evaporation, the SERS 
spectra were collected by Raman spectrometer. 

2.3. Characterization 

The surface morphology of the drawing paper before and after 
writing silver nanowire ink were characterized by field emission scan
ning electron microscopy (S4800, SEM, Hitachi) at an accelerating 
voltage of 5.0 kV. Normal Raman spectra and SERS spectra were 
measured using the PTT-MRI Raman spectrometer (ProTrusTech Co., 
Ltd.) equipped with a 532 nm laser. The SERS spectra were measured 
from 300 to 1800 cm− 1. The accumulated time and the resolution were 
one time and 2 cm− 1, respectively. The laser power incident on the 
sample was 3 mW and the integration time was 3 s. For 2, 2′-bipyridyl, 

the laser power on the sample was 5 mW, and each spectrum was 
collected with the integration time of 10 s. 

3. Results and discussion 

3.1. Morphological characterization of silver nanowires arrays 

Fig. 2(a) exhibited a low-magnification SEM image of the drawing 
paper. Note that besides the naturally folded three-dimensional struc
ture, some particulates were also observed. These particulates are pre
sumed to be pigment fillers, which are used in the manufacture of office 
paper [29]. The SEM image of the drawing paper coated with silver 
nanowires was presented in Fig. 2(b). It can be seen that silver nano
wires were interwoven to form network structures. The cross sectional 
SEM images of silver nanowires on drawing paper at different magnifi
cations were shown in Fig. S2. The thickness of the silver nanowires was 
about 3.34 μm. The SERS intensity was mainly concentrated in the gaps 
between adjacent nanowires and in the nanowire tips to form “hot 
spots”. 

3.2. The effect of preparation and test parameters on SERS activities of 
silver nanowires arrays 

The SERS spectra of crystal violet adsorbed on different paper-based 
silver nanowires arrays were exhibited in Fig. S3. By comparison, it 
could be found that the silver nanowires arrays on drawing paper had 
relatively high SERS intensity. Therefore, the following research mainly 
discussed the silver nanowires arrays on drawing paper. During the 
preparation of the arrays, drying temperature and time were the 
important parameters. To investigate the effect of drying temperature on 
SERS activities of the arrays, SERS spectra of crystal violet adsorbed on 
the arrays dried from 50 to 150 ◦C were collected. The laser power and 
integration time were 1 mW and 3 s, respectively. The characteristic 
peak at 913 cm− 1 was picked to calculate the peak intensity. And the 
relationship between drying temperature and SERS intensity was plotted 
in Fig. 3(a). The peak intensity first increased and then decreased 
gradually with the increase of drying temperature. The best performance 
was achieved when the drying temperature reached 100 ◦C. Fig. 3(b) 
displayed the relationship between different drying time and SERS ac
tivities of silver nanowires arrays under the same measurement condi
tions. The silver nanowires adhered to the drawing paper better when 
the drying time was 30 min. In addition, laser power and integration 
time were also the important parameters. Fig. 3(c) showed the SERS 
activities of the arrays with laser power from 1 mW to 8 mW and inte
gration time of 1 s. The SERS activities increased with laser power and 
the best performance was reached at 3 mW. However, the SERS activ
ities gradually decreased with the further increase of laser power. The 

Fig. 6. SERS spectra of crystal violet were obtained by pressing the fingerprint 
on silver nanowires arrays. 

Fig. 7. (a) Normal Raman spectrum of 2, 2′-bipyridyl solid powder (black line) and SERS spectrum of 10-3 mol/L 2, 2′-bipyridyl after dropping HCl (red line). (b) 
SERS spectra of 2, 2′-bipyridyl with different concentrations after dropping HCl and the peak intensity at 1488 cm− 1 versus 2, 2′-bipyridyl concentration. 
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excess laser power would burn the arrays and reduce the SERS activities. 
When the laser power is 1 mW, the line graph of different integration 
time versus the peak intensity of crystal violet was presented in Fig. 3(d). 
The peak intensity increased with integration time. To achieve fast and 
sensitive SERS detection, the laser power and integration time were 
selected as 3 mW and 3 s in the following experiments. 

3.3. SERS sensitivity of silver nanowires arrays 

To further evaluate its SERS sensitivity, the SERS spectra of crystal 
violet with different concentrations were measured under the same 
condition as depicted in Fig. 4(a). The characteristic peaks at 913, 1176, 
1372 and 1620 cm− 1 were clearly distinguished. Among them, the peak 
at 913 cm− 1 could be attributed to ring skeletal vibration. The peak at 
1176 cm− 1 corresponded to the characteristic of C − H in plane bending 
vibrations. The peaks at 1372 and 1620 cm− 1 represented N-phenyl 
stretching and ring C − C stretching, respectively [30–32]. Fig. 4(b) 
visually depicted the relationship between the concentrations of crystal 
violet and the SERS intensities at 913 and 1176 cm− 1. The SERS in
tensities continuously decreased with the decrease of crystal violet so
lution concentration. However, the SERS intensities did not change 
significantly after the concentration was reduced to 10-8 mol/L, and two 
main characteristic peaks could still be observed. The minimum detec
tion concentration of crystal violet is 10-15 mol/L. The results indicated 
that the silver nanowires arrays had strong SERS responses. Table 1 
listed the detection performance of silver nanowires SERS substrates 
prepared by different methods. The arrays prepared by the automatic 
writing method showed better sensitivity compared with silver nano
wires SERS substrates reported in other literatures [19,33–36]. 

3.4. SERS properties of silver nanowires arrays 

The uniformity, reproducibility and stability of silver nanowires ar
rays were systematically investigated. To study the uniformity of the 
arrays, thirty points were randomly selected on the same silver nano
wires array. The SERS spectra were displayed in Fig. 5(a), and each 
spectral line was nearly identical. Furthermore, the peak intensities at 
913 cm− 1 were plotted as a bar graph in Fig. 5(b). The relative standard 
deviation (RSD) value was calculated to be 10.3%. Therefore, the pre
pared silver nanowires arrays can serve as a relatively reliable SERS 
detection platform. 

In order to further explore the reproducibility of arrays, 4 × 4 silver 
nanowires arrays were prepared on the drawing paper by automatic 
writing method. The photograph of silver nanowires arrays was shown 
in the inset of Fig. 5(d). The SERS spectra of crystal violet obtained from 
the silver nanowires arrays were presented in Fig. 5(c). The sixteen 
spectral lines could be well overlapped after being shifted. Fig. 5(d) 
displayed a scatter plot of SERS intensity variations corresponding to the 
peaks at 913 and 1176 cm− 1. The corresponding RSD values were 6.83% 
and 9.63%, respectively, which indicated that the prepared silver 
nanowires arrays had good reproducibility. 

Silver is easily oxidized during long-term storage. Therefore, the 
stability during storage is critical for the practicality of the SERS arrays. 
To study the stability, the SERS spectra of crystal violet were collected 
from the same array every week at room temperature, as shown in Fig. 5 
(e). The SERS signals can be detected even if the array was preserved for 
ten weeks. Each spectral line had good resolution and the peak positions 
were almost identical. Fig. 5(f) exhibited the SERS intensities changes at 
913 and 1176 cm− 1 within ten weeks. The results indicated that the 
silver nanowires arrays were relatively stable at ambient temperature. 

3.5. Fingerprint detection 

Aromatic dyes can be used to enhance the visualization of finger
prints [36]. Therefore, the detection of crystal violet residues in fin
gerprints was explored based on the above-mentioned SERS arrays. A 

drop of 10-2 mol/L crystal violet solution (2.5 μL) was dropped on the 
finger and continuously pressed on the arrays for SERS detection. Fig. 6 
showed the SERS spectra from the first to ninth pressing. It is evident 
that the Raman characteristic peaks of crystal violet were still clearly 
visible even after the ninth pressing. 

3.6. Quantitative analyses of 2, 2′-bipyridyl 

2, 2′-bipyridyl, an aromatic heterocyclic compound containing ni
trogen, was selected to further detect the SERS performance of the arrays 
[37]. The SERS signals could not be detected by directly dropping 2, 2′- 
bipyridyl on the silver nanowires arrays. The reason may be that 2, 2′- 
bipyridyl molecules can’t attach to silver nanowires. Therefore, it is 
necessary to find a substance to help 2, 2′-bipyridyl molecules adsorb on 
the surface of arrays. Chlorine ions in hydrochloric acid (HCl) can form 
Ag-Cl active sites with silver atoms that are conducive to molecular 
chemical adsorption and SERS enhancement, thereby enhancing the 
molecules signals [38,39]. Fig. 7(a) displayed the normal Raman spec
trum of 2, 2′-bipyridyl solid powder and SERS spectrum of 10-3 mol/L 2, 
2′-bipyridyl after dropping HCl. Compared with the normal Raman 
spectrum, the peak positions were slightly shifted. It may be caused by 
the interaction between 2, 2′-bipyridyl molecules and the arrays [40]. A 
series of 2, 2′-bipyridyl solutions with different concentrations were 
dropped on silver nanowires arrays. After they were completely dried, 3 
μL of 0.1 mol/L HCl was dropped on the above arrays. The SERS spectra 
were then collected before the HCl evaporated, as shown in Fig. 7(b). 
The SERS signals decreased with decreasing the concentration of 2, 2′- 
bipyridyl. The laser power and the integration time were 5 mW and 10 s, 
respectively. Moreover, the detection limit of 2, 2′-bipyridyl was as low 
as 5 × 10-5 mol/L. The linear relationship between the SERS intensity at 
1488 cm− 1 and concentration was exhibited in the inset of Fig. 7(b). 

4. Conclusion 

In this paper, a simple, fast and mass-producible automatic writing 
method was adopted to fabricate silver nanowires SERS arrays. The 
method has the advantages of easy operation, high efficiency and 
automatic preparation. The prepared arrays exhibited strong SERS 
response to crystal violet and a low detection concentration of 10-15 

mol/L was obtained. In addition, silver nanowires also had good uni
formity across a single array and high repeatability between different 
arrays. More importantly, the Raman scattering signal of crystal violet 
could still be observed after ten weeks of storage on the same array. 
Finally, the detection of crystal violet residues in fingerprints and the 
quantitative analyses of 2, 2′-bipyridyl were successfully achieved based 
on the above prepared SERS arrays. The results indicated that the pre
pared silver nanowires arrays are a relatively sensitive and reliable 
detection platform. 
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